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Abstract
We generalize the Brundobler–Elser hypothesis in the multistate Landau–Zener
problem to the case when instead of a state with the highest slope of the diabatic
energy level there is a band of states with an arbitrary number of parallel levels
having the same slope. We argue that the probabilities of counterintuitive
transitions among such states are exactly zero.

PACS numbers: 02.30.Hq, 02.30.Ik, 31.50.Gh

The multistate Landau–Zener problem has been an active field of research during the last
decade with various applications in condensed matter and atomic physics. The two-state
problem with linear time dependence of diagonal elements of the Hamiltonian was solved
exactly by Landau and Zener [1, 2]. The simplest generalization of the two-state problem is
the Schrödinger equation of the form

iψ̇(t) = (A + Bt)ψ(t), (1)

where A and B are Hermitian N × N matrices with constant elements. The Hamiltonian of
the model is H = A + Bt. The matrix B can be always chosen diagonal. The goal of the
theory is to find the transition probabilities, namely the squared elements of the scattering
matrix limt′→+∞,t→−∞|Sij(t

′, t)|2 where i and j enumerate eigenstates (the so-called diabatic
states) of the matrix B with time-dependent diabatic energies Ei(t) = Biit + Aii ≡ βit + αi.
Nondiagonal elements of the matrix A that couple diabatic states with the same slopes βi can
always be made zero by a time-independent change of the basis. It is convenient to visualize
the time dependence of diagonal elements of any such model in the time–energy diagram like
the one in figure 1. When all crossing points are well separated, one can try to solve the
problem naively by a successive application of the two-state Landau–Zener formula at every
two-level intersection. Even in this approximation, the dependence of transition probabilities
on parameters can be very complicated since amplitudes of different paths leading to the same
final states can interfere. The task becomes even more complicated when more than two levels
can be close to each other simultaneously. Then even approximate estimates become very
sophisticated [3]. In spite of this complexity, there have been a number of remarkable efforts
to solve the model (1) exactly, at least for some special choices of parameters. Generally,
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Figure 1. Diabatic energies of a five-state Landau–Zener model. The choice of parameters is as
follows: β1 = β2 = β3 = 1, β4 = 0, β5 = −0.8, α1 = 0, α2 = 0.3, α3 = 0.5, α4 = 0, α5 = 0.4.

this requires nontrivial approaches because to solve the nth-state model one must consider a
nth-order differential equation with time-dependent coefficients.

Although a few important classes of exactly solvable models of the type (1) have been
known for a long time [4, 5], the interest towards exact results in the multistate Landau–Zener
problem has grown up after the work of Brundobler and Elser [6], who noticed that for any
model of the form (1) there are elements of the transition probability matrix that can be found by
a simple application of the two-state Landau–Zener formula at every intersection of diabatic
energies. Particularly, they presented an empirical formula for the diagonal element of the
scattering matrix for the state whose diabatic energy level has the highest slope, i.e. if k is the
index of the state with βk = max(β1 . . . βN) or βk = min(β1 . . . βN) then

|Skk(+∞, −∞)| = exp


−π

∑
i (i �=k)

|Aki|2
|βk − βi|


 . (2)

Formula (2) is confirmed by all known exactly solvable models with finite number of states
[4, 5, 7–10] and by multiple numerical checks. Brundobler and Elser [6] speculated that this
finding probably indicates that the whole problem (1) can be solved exactly or at least can be
understood in terms of the two-level crossings. Various exact solutions and approximations
seem to support this idea [10, 11]. Recent work [12] demonstrated that (2) follows from a
simple analytical continuation of the asymptotic solution into the complex time, although such
a procedure fails to predict correctly other elements of the scattering matrix. The goal of
the present work is to demonstrate that the Brundobler–Elser hypothesis can be generalized to
some nondiagonal elements of the scattering matrix and to explain why analytical continuation
of amplitudes into the complex times provides correct predictions for some elements of the
scattering matrix.

Assume that instead of one state with the highest slope of diabatic energy level there is a
band of an arbitrary number of states having the same highest slope so that diabatic energies
in this band are different only by constant parameters αm. If we assume a ‘semiclassical’
approximation where a transition between any two states happen only at the corresponding
crossing point of their diabatic energies then there are elements of the transition probability
matrix that would be zero in this approximation. Such transitions, if they happen, are called
counterintuitive transitions [13]. Thus, in the model shown in figure 1, transitions from the
state 1 to states 2 and 3 and from the state 2 to the state 3 are counterintuitive.

Generally, for the model (1), if βm = βn = max(β1 . . . βN) then the transition from the
state m to the state of the same band n would be counterintuitive if αm < αn. Correspondingly,
if βm = βn = min(β1 . . . βN) then the transition is counterintuitive if αm > αn. We argue
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Figure 2. The deformed time contour for the evolution from large negative to large positive times
with t = R exp(iφ), R → ∞, 0 � φ � π.

that in the multistate Landau–Zener model with linear time dependence of diabatic energies
such counterintuitive transitions have exactly zero probability, i.e. without assuming any
semiclassical approximation for any model of type (1), if the transition from the state m

to the state n is counterintuitive, then

|Snm(+∞, −∞)| = 0. (3)

The ‘no-go’ equation (3) and the Brundobler–Elser conjecture (2) can be understood by
the approach similar to the one used by Landau in the two-state calculations [1]. Since we
are interested in the asymptotic magnitude of the amplitudes we can analytically extend
the evolution (1) to imaginary time and choose the evolution path so that always |t| → ∞. The
distances between instantaneous eigenenergies εi(t) of the Hamiltonian remain always large
in this case, namely of the order of |(βi − βj)t| � |Aij| for the states i �= j and hence we can
use the adiabatic approximation

ψi(t) = e−i
∫ t

t0
εi(t) dt

ψi(t0), (4)

where the state ψi has the leading asymptotic ψi ∼ exp(−iβit
2/2) at t → −∞.

Approximation (4) becomes exact in the limit t → ∞ but it is valid generally only if there
are no other solutions that become exponentially large in comparison with the state ψi to
which it is applied. Suppose that the state ψ0 has the largest slope of the diabatic energy β0

at t → −∞ and is initially occupied. In this case, it is convenient to choose the time path
as shown in figure 2 with t = R exp(iφ) where R → ∞ and φ decreases from π to zero.One
can always change variables so that β0 = 0 and βi < 0 for states with slopes βi �= β0 [6].
When φ changes in the interval from 3π/4 to π/4, the amplitudes of states with slopes βi < 0
are decreasing exponentially and become suppressed by the factor exp(C(φ)βi|t|2/2) where
βi < 0 and C(φ) is a positive coefficient that depends only on the angle. We choose the
asymptotics so that at the angle φ = 3π/4 the state ψ0 is dominating over all others, i.e. is
exponentially large in comparison to them. Then, the states with βi < 0 should not affect the
adiabatic approximation in the interval 3π/4 > φ > π/4 since they can only decrease there.
One can see that the condition that at φ = 3π/4 the state ψ0 is dominating also leads to the
vanishing of the amplitudes of other states with βi < 0 in the interval π < φ < 3π/4 so that it
is not forbidden to choose |ψ0(−∞)| = 1 and |ψi(−∞)| → 0 (i �= 0).

At the last part of the contour π/4 > φ > 0 amplitudes of states with βi < 0 grow from
almost zero value when the angle φ decreases to zero, but at φ = 0 time becomes real and,
hence, amplitudes cannot be larger than unity. So in this part of the contour such amplitudes
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have not enough time to become exponentially large. It means that they still remain small or
comparable with ψ0 at this interval and formula (4) should be valid for the state ψ0 during the
whole evolution. Substituting the energy up to the first-order correction in 1/|t|

ε0(t) ∼ α0 +
∑

i

|Ai0|2
(β0 − βi)t

(5)

into the formula for the transition probability

|S00|2 = |ψ0(+∞)|2
|ψ0(−∞)|2 = exp

(
−2 Im

( ∫
C

ε0(t) dt

))
(6)

we find the Brundobler–Elser result (2). It is clear from this analysis why formula (2) is
generally not valid for other diagonal elements of the scattering matrix. If an initially filled
state does not have the highest slope of the energy level there are states with higher slopes
whose amplitudes grow exponentially and become large in the interval 3π/4 > φ > π/4 of
the contour so that the adiabatic approximation becomes invalid in application to ψ0. To treat
this case properly, one should investigate the Stokes phenomenon near all crossing points of
diabatic energies [11].

This analysis becomes more complicated if there is more than one state having the same
largest energy slope β0. If such states have also larger constant part of the diabatic energy
αm > α0 they can grow in the first half of the contour as exp(C′(φ)αm|t|), i.e. faster than
the initially filled state ψ0, but being initially vanishing, amplitudes of such states can grow
only due to transitions from the other states. They are coupled directly only to states that
are suppressed by much stronger exponents exp(C(φ)βi|t|2/2) (βi < 0) at first half of the
time contour; therefore we do not expect that they become large in comparison with ψ0 up to
φ = π/2. In the second part of the path, π/2 < φ < 0 states with such an asymptotic exp(−iαt)

already decrease exponentially and become suppressed in comparison with ψ0; therefore we
can expect that they do not break the approximation (4) for the state ψ0 and have vanishing
amplitudes at the end of the evolution. This is exactly in agreement with (3).

Our arguments in support of (2) and (3) are certainly very intuitive and every step in
the mathematically rigorous proof requires more detailed justification. However, we note
that (3) is also confirmed by all known exactly solvable classes featuring the possibility of
counterintuitive transitions, namely by the Demkov–Osherov model [4], the generalized bow-
tie model [8] and the model of two crossing bands of parallel levels [9]. Besides, we performed
a number of numerical simulations with arbitrary choices of parameters. As we found, all of
them support our hypothesis (3). For example, in figure 3, we show the time dependence of
the probabilities to find the system at states 2 and 3 in the model demonstrated schematically
in figure 1 if initially only the state 1 is occupied. One can deduce that generally during
the evolution these probabilities can be rather high (>0.1) and show oscillating behaviour, but
asymptotically at t → +∞ they vanish. Numerically we can simulate the evolution only in the
finite time interval. This corresponds to the error in calculation of the transition amplitude of
the order of ∼1/T , where T is the time of the evolution. We kept other calculational errors not
larger than that value. For the evolution from t = −500 to 500 and the same parameters as in
figure 1 we find |S21|2 = 5.18×10−7 and |S31|2 = 3.11×10−7. In comparison |S11|2 = 0.234,
|S41|2 = 0.295 and |S51|2 = 0.472. We also note that although counterintuitive transitions
have vanishing probabilities, the presence of the states 2 and 3 does affect other elements of
the scattering matrix. Thus if we set all couplings of states 2 and 3 with all other states to
zero, then numerically calculated nondiagonal transition probabilities are |S41|2 = 0.672 and
|S51|2 = 0.094, which is different from our previous numerical result.
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Figure 3. Time dependence of the counterintuitive transition probabilities for the model in figure 1.
Triangles correspond to P(t) = |S21(t, −∞)|2 and boxes show P(t) = |S31(t, −∞)|2. The choice
of nondiagonal elements of the Hamilton operator is H12 = H13 = H23 = 0, H34 = 0.8,
H35 = 0.3 + 0.24i, H24 = 0.1 + 0.7i, H25 = 0.5 + 0.1i, H14 = 0.4 + 0.12i, H15 = 0.25 + 0.2i,
H45 = 0.6 + 0.9i. The other elements are obtained by employing Hermitian properties of the
matrix H .
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Figure 4. Diabatic levels of a four-state model. The matrix elements of the Hamilton operator
are chosen as follows: H11 = −t, H22 = − t − ε, H33 = t, H44 = 0.5t − 0.5, H12 = 0,
H13 = 0.4 − 0.1i, H14 = 0.6, H23 = 0.4 + 0.5i, H24 = 0.2 + 0.3i. The other elements are
obtained by employing Hermitian properties of the matrix H .

As another example, consider a four-state model shown in figure 4. Obviously, for ε > 0
the transition from state 1 to state 2 is counterintuitive but for ε < 0 it is not. Figure 5 shows
numerically calculated final probabilities to find the system in all four states for the evolution
from t = −600 to 600 when initially only state 1 is populated.

One can see that the probability to remain in state 1 does not depend on ε, in agreement
with the Brundobler–Elser conjecture. A small deviation from the Brundobler–Elser formula
can be seen for two points with ε closest to zero. However, this should be explained due
to the fact that ε = 0 is the critical point and it takes much more time for probabilities to
saturate in its vicinity, but in simulations the time interval had to be finite. At negative ε

all other probabilities strongly depend on the distance between states 1 and 2. This can be
explained partly even in the independent crossing approximation as due to the interference
among different semiclassical paths leading to the same final state. However, for ε > 0, the
independent crossing approximation does not predict any dependence of probabilities on ε if
initially only state 1 is populated. Nevertheless, one can deduce from figure 5 that in addition
to state 1 only the transition probabilities to state 2 become flat and have indistinguishable
from zero magnitudes in agreement with (3). Transition probabilities to states 3 and 4 strongly
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Figure 5. Transition probabilities to all states in the model in figure 4 as functions of the distance ε

between levels 2 and 1. Long before level crossings the probability of state 1 is set to unity. The
transition probabilities are represented by boxes, state 1; stars, state 2; crossed lines, state 3;
triangles, state 4.

depend on ε there. This indicates that simulations were performed for the range of parameters
where the independent crossing approximation fails unless its predictions become exact for
some reason.

In conclusion, the generalization of the Brundobler–Elser hypothesis is proposed which
states that counterintuitive transitions in the multistate Landau–Zener model with the linear
time dependence of diabatic energies are asymptotically forbidden. It is confirmed by all
numerical tests and by all known exact solutions. In addition, we demonstrated that this result
can be explained by continuation of the time path into the complex plain, i.e. by the same
approach as the one proposed by Landau to solve the two-state model. As in any known exact
solution of the multistate Landau–Zener model, formula (3) coincides with predictions of the
independent crossing approximation. This fact points to the common origin of all such exact
results.
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